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Abstract

Many structural components can be regarded as waveguides. They are uniform in one direction so that the cross section

of the waveguide has the same physical and geometric properties at all points along the axis of the waveguide. In this paper

a method is presented to calculate the forced response of such a structure using a combination of wave and finite element

(FE) approaches. The method involves post-processing a conventional, but low order, FE model in which the mass and

stiffness matrices are typically found using a conventional FE package. A section of the waveguide is meshed and the

eigenvalues and eigenvectors of the resulting transfer matrix found. The eigenvectors form a set of basis functions for the

analysis of the structure as a whole, allowing the global dynamic stiffness matrix to be built easily and then the forced

response to be calculated very efficiently. The main advantage of the approach over the alternative waveguide/FE

approach often termed the spectral FE method, is that conventional FE packages can be used to form the stiffness and

mass matrices so that structures with complex geometries or material distributions can be analysed with relative ease. To

demonstrate the efficacy of the method examples of the forced response for a finite beam and plate-strip are presented.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Many structures have symmetry in one direction. As shown in Fig. 1, this symmetry can be a translation
according to a privileged direction (a), a rotational symmetry (b) or a periodicity (c). Structures of this type
can be considered as a waveguide. To predict their dynamic behaviour, for instance the calculation of a
frequency response function (FRF), classical finite element (FE) software often offers no other choice than
meshing the whole structure. Exceptions are rotational and cyclic symmetries, which are solved by a
decomposition of the displacements in cosine and sine functions. A review of the current practises for these
structures can be found in Ref. [1]. However, a better use of the symmetry could lead to a more efficient
computation. Concerning the general calculation of waveguides, two approaches were mainly used in the past.
A first group of authors consider uniform waveguides corresponding to cases (a) and (b) of Fig. 1, while the
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. Different structures with symmetries along the y direction: structures with: (a) translational symmetry; (b) rotational symmetry; (c)

periodicity.
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other group is interested by periodic structures, case (c) of Fig. 1. The case of periodic structures is clearly
more general as uniform waveguides are only special cases of periodic structures with an arbitrary period.

The vibration of uniform waveguides has been the topic of much research. Von Flotow [2] and Beale and
Accorsi [3] used the wave approach to study the vibration of structural networks composed of simple uniform
beams, and solved for the dynamics of individual elements and of the junctions between elements by analytical
methods. They described the dynamic behaviour of the structure in terms of the waves in each element, and
the properties of the junctions between each element and the boundary conditions. The efficiency is greatly
improved compared to FE methods as a beam can be modelled using only a single element. More recently the
analysis of structures with constant cross section is made by the so-called spectral finite element (SFE)
approach which was developed mainly by Finnveden [4,5]. The SFE considers more general uniform
waveguides with a complex cross section. The displacements in the cross section can be described by the FE
method while the variation along the axis of symmetry is expressed as an ordinary differential equation whose
solution can be written in the form ejkyUðx; zÞ where y is the direction of symmetry and x and z the coordinates
of the cross section. Nilsson [6] has used the SFE approach to study structures made of plates and shells.
Shorter [7] developed SFEs for viscoelastic laminates using Lagrange’s equations, and found dispersion
relations. Birgersson [8–10] used the SFE to solve various problems including plane waves and fluid structure
interactions. Gry [11] applied similar ideas to the calculation of wave propagation in rails using a FE model of
the cross section of a rail. He then calculated dispersion relations and accelerances. In the SFE, Finnveden
[4,5] showed that the discrete FE equation can be written as

Xi¼N

i¼1

kiKi � o2M

" #
U ¼ 0, (1)

where M is the usual mass matrix. The stiffness matrix is developed for various powers of the wavenumber ki,
describing the propagation in the direction of symmetry. The stiffness matrices Ki are not standard matrices of
the FE formulation and so must be determined for each problem with methods such as Lagrange’s equations,
Hamilton’s principle or the virtual work principle. So for each type of element a complete analysis is needed,
which starts by the development of special elements allowing the calculation of Ki. This makes the connection
with the standard use of the FE method difficult and does not allow the benefits of powerful existing FE
software to be exploited. On the contrary the method proposed in this article can use the full set of elements
found in existing FE software.

The second approach considers the propagation of waves in periodic structures and has also been studied
extensively, see for instance the work of Brillouin [12] and the review paper by Mead [13]. The work has
involved classical analysis of periodic structures. The approach is based on Floquet’s principle or the transfer
matrix. The basic idea is that the propagation of waves in a periodic structure can be obtained from
propagation constants l, which depend on the frequency, or by the transfer matrix T, which relates the
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displacements q and the forces f on both sides of the periodic element by the relationship

qR

�fR

" #
¼ T

qL

fL

" #
¼ l

qL

fL

" #
, (2)

where the subscripts L and R denote the left- and right-hand sides of the periodic element, respectively. Mead
presented a general theory for wave propagation in periodic systems in Refs. [14–16]. He showed that the
number of waves is twice the minimum number of degrees of freedom at coupling interfaces and can be
decomposed into an equal number of positive and negative-going waves. The propagation constants l are the
eigenvalues of a transfer matrix T and can be written as l ¼ ejkl where l is the length of the periodic cell, k is a
wavenumber and j the imaginary unit. For complex structures, FE models were used to calculate the
propagation constants and wave modes. The main purpose is to get dispersion relations and to use them in
energetic methods. Such ideas were developed by Houillon et al. in Refs. [17,18] and by Mace et al. in Refs.
[19,20]. In Mace et al. an approach similar to the method developed in this paper was used to calculate
dispersion relations but not for point force responses which is the subject of this paper. Bocquillet [21] applied
similar ideas mainly also for energetic methods.

This paper presents a method, based on previous approaches to the analysis of periodic structures, to
calculate the forced response of structures such as those illustrated in Fig. 1. This alternative approach is called
the waveguide FE (WFE). A section of the waveguide, typically, but not necessarily, one element long, is
modelled using conventional FE methods, using a commercial FE package. The resulting mass, stiffness and
damping matrices are then post-processed to give the dynamic stiffness matrix of the cell. This is then
reformulated in terms of waves, and periodic structure theory is used to build the dynamic stiffness matrix of
the whole structure. An explicit, simple and stable expression for the global dynamic stiffness matrix is
obtained from the wave shapes. It involves only propagation constants with modulus less than 1 which avoids
most of the numerical problems found elsewhere. Then the response of the whole structure to harmonic
excitation can be calculated easily by using the precedent dynamic stiffness matrix as a superelement.

The WFE approach is similar to the SFE approach, except that conventional FE software packages can be
used for the modelling and that the dynamic stiffness matrix of the whole structure is built explicitly. This
means that structures with complex geometries or material distributions can be analysed with relative ease.
Compared with the standard FE approach, where the whole waveguide is meshed, the computational cost of
the WFE approach is very low, because only a small section of the waveguide has to be meshed. Similar ideas
were given by Ettouney [22] and also mainly in term of waves by Houillon [18] and Bocquillet [21] but no
simple, neither numerically stable expression for the global stiffness matrix of the structure were provided by
these authors. Gry and Gontier also extended their precedent work in Ref. [23] to take into account the
periodic structure of the track by solving the problem using a transfer matrix approach. Here the dynamic
stiffness matrix of the complete structure is built easily from the knowledge of wave modes and propagation
constants calculated from one cell.

With the usual FE methods, it is well known that an increase in the frequency of analysis requires the mesh
size to be decreased, and a common criterion is to have between 5 and 10 nodes per wavelength. Of course, this
requirement can lead to large meshes and thus a heavy computational burden. Some methods such as the
Guyan reduction described in Ref. [24] or [26] can be used to reduce the number of degrees of freedom. It
consists in neglecting the inertia of slave degrees of freedom and in keeping a reduced dynamic system with
only master degrees of freedom. However, it requires a judicious selection of these master degrees of freedom
and leads anyway to an approximate system. In the WFE approach the solution is the same as one obtained
with the usual FE method with a large number of cells and moreover the computation time is virtually
independent of the number of cells in the structures. This means a much larger number of cells can be used
leading to efficient computation for high frequencies. Further improvement can be achieved using a reduced
wave basis to describe the displacements in a cross section. The number of degrees of freedom in a cross
section can thus be greatly reduced, reducing computation time. The usual constraints are placed on the size of
the mesh over the cross section, but the dimensionality of the problem is reduced.

The paper is organised as follows. Following the introduction, the FE analysis of periodic structures is
presented. Then the general methodology for the analysis of wave propagation in periodic structures is given
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in Section 3. A reduced basis is described. In Section 4 this is used to calculate the main result of the paper
which is the expression of the dynamic stiffness matrix of a complete structure. Two examples including a
beam and a plate are described in Section 5 before the paper is closed with some general conclusions.

2. Finite element analysis of periodic structures

2.1. Cell dynamics

A section of the structure considered is shown schematically in Fig. 2. The section is divided into a finite
number of cells with index n. The cells are meshed with an equal number of nodes on their left- and right-hand
edges. The discrete dynamic equation of a cell obtained from the FE model at a frequency o is given by

ðKþ joC� o2MÞ q ¼ f, (3)

where K, M, and C are the stiffness, mass and damping matrices, respectively, f is the loading vector and q the
vector of the degrees of freedom. Introducing the dynamic stiffness matrix ~D ¼ Kþ joC� o2M, decomposing
into left ðLÞ and right ðRÞ boundaries, and interior ðIÞ degrees of freedom, and assuming that there are no
external forces on the interior nodes, results in the following matrix equation:

~DII
~DIL

~DIR

~DLI
~DLL

~DLR

~DRI
~DRL

~DRR

2
64

3
75

qI

qL

qR

2
64

3
75 ¼

0

fL

fR

2
64

3
75. (4)

The interior degrees of freedom can be eliminated using the first row of Eq. (4), which results in

qI ¼ �
~D
�1

II ð
~DILqL þ

~DIRqRÞ. (5)

This leads to

~DLL � ~DLI
~D
�1

II
~DIL

~DLR � ~DLI
~D
�1

II
~DIR

~DRL � ~DRI
~D
�1

II
~DIL

~DRR � ~DRI
~D
�1

II
~DIR

2
4

3
5 qL

qR

" #
¼

fL

fR

" #
, (6)

which can be written as

DLL DLR

DRL DRR

" #
qL

qR

" #
¼

fL

fR

" #
. (7)

The new dynamic stiffness matrix is thus obtained after elimination of the interior degrees of freedom. By
symmetry of the stiffness, damping and mass matrices, the dynamic stiffness matrix is also symmetric, which
leads to tDLL ¼ DLL,

tDRR ¼ DRR and tDLR ¼ DRL, where the superscript t indicates the transpose. Eq. (7),
which relates the forces and displacements on the two sides of the cell, is the starting point for the WFE
analysis.
qL qR

fL fR

-2qL
-1qL

0qL
1qL

2qL
3qL

4qL

n=-2 n=-1 n=0 n=1 n=2 n=3

Fig. 2. Structure with periodic elements. A cell is shown with the force and displacement vectors on the right and left-hand sides.
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2.2. Reduced basis

The dynamic stiffness matrix introduced in Eq. (7) can be used when the number of degrees of freedom is
small. For a large number of degrees of freedom, it is better to introduce a reduced basis and a smaller number
of parameters describing the displacements in the cross section. Introducing independent basis functions
Qi; 1pipNs in a cross section with Ns degrees of freedom, the displacement can be written as

q ¼
Xi¼Ns

i¼1

riQi. (8)

If we retain only n functions in the sum, with noNs, the displacement in a cross section can be approximated by

qffi
Xi¼n

i¼1

riQi. (9)

The quality of the approximation depends on the choice of the basis Qi and the number of retained basis
functions n, which ideally should be much smaller than Ns. Introducing the matrix

Qþ ¼ ½Q1; . . . ;Qn�. (10)

The reduced dynamic stiffness matrix can be defined by

Dr
LL Dr

LR

Dr
RL Dr

RR

" #
rL

rR

" #
¼

gL

gR

" #
, (11)

with the projections of the dynamic stiffness matrices on the new basis defined by

Dr
LL ¼

tQþDLLQ
þ,

Dr
LR ¼

tQþDLRQ
þ,

Dr
RL ¼

tQþDRLQ
þ,

Dr
RR ¼

tQþDRRQ
þ ð12Þ

and the reduced forces given by

gL ¼
tQþfL ¼

t½gL1 � � � gLn�,

gR ¼
tQþfR ¼

t½gR1 � � � gRn�. ð13Þ

Thus in the reduced basis coordinates the behaviour of the cell is described by Eq. (11) which is similar to
Eq. (7). Therefore, the same approach can be used for structures described by the physical degrees of freedom
as in Eq. (7) or by another basis as in Eq. (11). Henceforth, no distinction is made between these two
relationships and the vector qL equally describes either the physical degrees of freedom or the reduced basis
form. The question then remains as to how to find a good basis such that Eq. (11) is a smaller system of
equations than Eq. (7). This is addressed later in the paper.
3. Wave analysis in a cell

3.1. Transfer matrix

Consider the structure shown in Fig. 2. If there are no external forces applied to the structure, continuity of
displacements and equilibrium of forces at the boundary between cells n and nþ 1 yields,

qnþ1
L ¼ qn

R,

fnþ1
L ¼ �fn

R. ð14Þ
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The transfer matrix T links the displacements and forces in cross sections n and nþ 1 as follows:

T
qn

L

fn
L

" #
¼

qn
R

�fn
R

" #
¼

qnþ1
L

fnþ1
L

" #
. (15)

Combining Eqs. (7), (14) and (15) the transfer matrix can be written in terms of the dynamic stiffness matrix as

T ¼
�D�1LRDLL D�1LR

�DRL þDRRD
�1
LRDLL �DRRD

�1
LR

" #
. (16)

Free wave propagation is described by the eigenproblem

T
qL

fL

" #
¼ l

qL

fL

" #
. (17)

The eigenvector associated with the eigenvalue li is denoted by

Ui ¼
qðliÞ

fðliÞ

" #
(18)

and is termed a basis wave vector.
3.2. Properties of wave vectors

The first row of Eq. (17) leads to

ðDLL þ lDLRÞqL ¼ fL. (19)

Combining this with the second row of Eq. (17) gives

DLL þDRR þ lDLR þ
1

l
DRL

� �
qL ¼ 0. (20)

The eigenvector qL is thus the solution of a quadratic eigenvalue problem. Taking the transpose of Eq. (20)
gives

tqL DLL þDRR þ lDRL þ
1

l
DLR

� �
¼ 0, (21)

where the symmetry of the dynamic stiffness matrix has been used. Thus qL is both a right-eigenvector
associated with the eigenvalue l and a left-eigenvector associated with the eigenvalue 1=l. Since the left and
right eigenproblems have identical eigenvalues, it follows that if l is an eigenvalue of Eq. (20) then so, too, is
1=l. These represent a pair of positive- and negative-going waves. This is true for any shape or property of the
cell. The right eigenvector of Eq. (17) for eigenvalue li is given by

Ui ¼
qðliÞ

ðDLL þ liDLRÞqðliÞ

" #
(22)

and the left eigenvector associated with li is given by

Wi ¼
tq

1

li

� �
ðDRR þ liDLRÞ

tq
1

li

� �� �
. (23)

Orthogonality properties can be obtained from the relationships

TUj ¼ ljUj,

WiT ¼ liWi, ð24Þ
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which leads to

WiTUj ¼ ljWiUj ¼ liWiUj . (25)

This quantity must equal zero if lialj, so, the left and right eigenvectors are such that

WiUj ¼ didij , (26)

where di is some constant. A normalisation of the eigenvectors could be chosen so that di ¼ 1, but here the
vectors qðliÞ are normalised instead.
3.3. Wave decomposition in a cell

From the preceding section, it is clear that the 2n eigenvalues of Eq. (17) can be split into two sets of n

eigenvalues and eigenvectors which are denoted by ðli;U
þ
i Þ and ð1=li;U

�
i Þ, with the first set such that jlijp1.

In the case jlij ¼ 1, the first set must contain the waves propagating in the positive direction, which are such

that RefjoqH
L fLgo0. The inverse eigenvalue 1=li, in the second set, is associated with the waves such that

RefjoqH
L fLg40. It has been shown by Mead [16] that for symmetric elements and attenuating waves, the

positive and negative eigenvectors are equal, that is qðliÞ ¼ qð1=liÞ provided that li and T are real. In the
general case there is no simple relationship between these two vectors.

These waves are now used as a basis in a cross section. The left state vector is given by the following sum of
positive and negative-going waves with respective amplitudes aþi and a�i :

xL ¼
qL

fL

" #
¼
Xi¼n

i¼1

ðaþi Uþi þ a�i U�i Þ. (27)

In the same way, the right state vector is given by

xR ¼
qR

�fR

" #
¼
Xi¼n

i¼1

ðbþi Uþi þ b�i U�i Þ. (28)

The relationships between the incoming and outgoing waves in the cell are obtained from the relation
xR ¼ TxL. Because the vectors Uþi and U�i are eigenvectors of T, this relationship can be written as

bþ

a�

" #
¼

K 0

0 K

� �
aþ

b�

� �
, (29)

where the vectors aþ; a�; bþ and b� are the vectors of wave amplitudes and the diagonal matrix K ¼
diagðl1; . . . ; lnÞ contains the eigenvalues of modulus less than or equal to one.
3.4. Calculation of the reduced basis

When the number of degrees of freedom in a cross section is large, it is better to use a reduced basis as
discussed in Section 2.2. A possible choice for the basis Qi; 1pipNs in a cross section is given here. One
possibility is to use the eigenvectors qðliÞ for a specified frequency, for instance the highest frequency f max used
in the analysis, and to select a limited number of vectors, those whose eigenvalues are close to one. These
would typically include all the propagating wave components, for which jlij ¼ 1, together with the least-
rapidly attenuating waves, i.e. those for which jlijo1 is largest. To calculate the eigenvalues and eigenvectors
numerically, one has to solve the eigenvalue problem (17) or (20). For a large number of degrees of freedom,
direct use of usual numerical solvers can lead to difficulties because the transfer matrix may be ill-conditioned.
It is better, for instance, to define a problem in term of the eigenvalue ðlþ 1=lÞ as proposed by Gry and
Gontier in Ref. [22] or Zhong [25], who showed that the transfer matrix is symplectic and gave a detailed
analysis of its eigenvectors. This means that we search for the eigenvalues of Tþ T�1 instead of the
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eigenvalues of T. The eigenvalue problem in Eq. (20) can be reformulated as

O DRL

�DRL �DLL �DRR

" #
qL

~qL

" #
¼ l

DRL O

O DLR

" #
qL

~qL

" #
, (30)

with ~qL ¼ lqL. Another possibility is in the form

�DLL �DRR �DLR

DLR O

" #
qL

~qL

" #
¼

1

l

DRL O

O DLR

" #
qL

~qL

" #
. (31)

Taking the sum of Eqs. (30) and (31) and reorganising leads to

DRL O

O DLR

" #
qL

~qL

" #
¼

1

lþ ð1=lÞ

�ðDLL þDRRÞ �ðDLR �DRLÞ

ðDLR �DRLÞ �ðDLL þDRRÞ

" #
qL

~qL

" #
. (32)

This last system has only double eigenvalues. Denoting two independent eigenvectors associated to the same
eigenvalue as w1 and w2, an eigenvector of the system given by Eq. (30) associated with the eigenvalue l can be
decomposed as

w ¼ a1w1 þ a2w2. (33)

Inserting this into Eq. (30) gives

lDRL �DRL

DRL DLL þDRR þ lDLR

" #
ða1w1 þ a2w2Þ ¼ 0. (34)

Taking, for instance, the scalar product with the vector w1, leads to a relationship between a1 and a2 which
gives the vector w up to a normalisation factor. Now the eigenvectors obtained for the frequency f max are used
in Eq. (11) as basis vectors for all the frequencies. This means that the matrixQþ defined in Eq. (10) is given by

Qþ ¼ ½qðl1Þ; . . . ; qðlnÞ�. (35)

The eigenvalues li; 1pipn, are those whose moduli are closest to unity among the Ns eigenvalues of Eq. (17).
Only these n eigenvalues are calculated. The number n of vectors to be retained will be shown in the examples
given in Section 5. For some problems use of the same basis for all frequencies is not possible. If this is so a
new basis must be calculated for a selected set of frequencies ðf 1; f 2; . . . ; f nÞ in the frequency range of
calculation. The basis calculated at the frequency f i is used for frequencies near f i.
4. Analysis of a complete structure

4.1. Dynamic stiffness matrix of a N-cell structure

Consider now the structure in Fig. 3, which is split into N identical cells. The objective is to calculate the
dynamic stiffness matrix of this structure. This means that the relationship between the forces and
displacements at each end of the structure needs to be determined. From Eqs. (27) and (28), and using the
orthogonal properties given in Eq. (26), the wave amplitudes can be obtained from the left and right state
q1 

f1 

q2 qN-1 qN qN+1

fN+11 2 N-1 N

Fig. 3. Structure with N cells.
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vectors by the scalar products

dþi aþi ¼ Wþi � xL; dþi bþi ¼ Wþi � xR,

d�i a�i ¼ W�i � xL; d�i b�i ¼ W�i � xR, ð36Þ

where the d�i are the factors given in Eq. (26). Thus Eq. (29) can be written as

Wþ � xR

W� � xL

" #
¼

K 0

0 K

� �
Wþ � xL

W� � xR

" #
, (37)

where Wþ and W� are matrices whose rows are the vectors Wþi and W�i , respectively.
Generalising Eq. (37) for the case of N cells gives

Wþ � xNþ1

W� � x1

" #
¼

KN 0

0 KN

" #
Wþ � x1

W� � xNþ1

" #
, (38)

where x1 is the left state vector comprising the displacements and forces in the first section (number 1) and
xNþ1 are the displacements and forces in the last section (number N þ 1). The matrices Wþ and W� can be
partitioned as follows:

Wþ ¼ ½tF� tQ��; W� ¼ ½tFþ tQþ�, (39)

where

Qþ ¼ ½qðl1Þ � � � qðlnÞ�,

Q� ¼ q
1

l1

� �
� � � q

1

ln

� �� �
ð40Þ

and

tFþ ¼ tQþDRR þ K�1 tQþDLR ¼ �
tQþDLL � KtQþDRL,

tF� ¼ tQ�DRR þ KtQ�DLR ¼ �
tQ�DLL � K�1tQ�DRL: ð41Þ

The matrices F� in Eq. (41) are related to the force components of the left eigenvectors. Eq. (38) can also be
written as

tF� tQ�

KN tFþ KN tQþ

" #
qNþ1

�fNþ1

" #
¼

KN tF� KN tQ�

tFþ tQþ

" #
q1

f1

" #
(42)

or in the form

KN tQ� tQ�

tQþ KN tQþ

" #
f1

fNþ1

" #
¼
�KN tF� tF�

�tFþ KN tFþ

" #
q1

qNþ1

" #
. (43)

Replacing F� by the expressions given in Eq. (41) results in

KN tQ� tQ�

tQþ KN tQþ

2
4

3
5 f1

fNþ1

" #

¼
KN tQ�DLL þ KN�1 tQ�DRL

tQ�DRR þ KtQ�DLR

tQþDLL þ KtQþDRL KN tQþDRR þ KN�1 tQþDLR

2
4

3
5 q1

qNþ1

" #

¼
KN tQ� tQ�

tQþ KN tQþ

2
4

3
5 DLLq1

DRRqNþ1

" #
þ

KN�1 tQ� KtQ�

KtQþ KN�1 tQþ

2
4

3
5 DRLq1

DLRqNþ1

" #
. ð44Þ
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Multiplying by the inverse of the matrix on the left-hand side leads to

f1

fNþ1

" #
¼

DLLq1

DRRqNþ1

" #
þ
ðtQ�Þ�1KN tQ� I

I ðtQþÞ�1KN tQþ

2
4

3
5
�1

�
ðtQ�Þ�1KN�1 tQ� ðtQ�Þ�1KtQ�

ðtQþÞ�1KtQþ ðtQþÞ�1KN�1 tQþ

2
4

3
5 DRLq1

DLRqNþ1

" #
. ð45Þ

By using the symmetry of the cell dynamic stiffness matrix and the propagation matrices

Pl ¼ Q�KðQ�Þ�1,

Pr ¼ QþKðQþÞ�1, ð46Þ

where Pr is the matrix of eigenvalues li and eigenvectors qðliÞ, and Pl is the matrix of eigenvalues li and
eigenvectors qð1=liÞ, yields

f1

fNþ1

" #
¼ DT

q1

qNþ1

" #
, (47)

where DT is the dynamic stiffness matrix of the whole structure given by

DT ¼
DLL 0

0 DRR

" #
þ

DLR 0

0 DRL

" #
PN�1

l Pr

Pl PN�1
r

" #
PN

l I

I PN
r

" #�1
. (48)

This expression of the dynamic stiffness matrix is the central result of this paper. The dynamic stiffness matrix
can easily be calculated when the propagation matrices Pr and Pl are known using relation (46). Only relations
(46) and (48) are evaluated numerically from the knowledge of the eigenvalues and eigenvectors of the transfer
matrix. The number of calculations required to obtain this global matrix does not depend on the number of
cells N in the structure as the power of the matrices are easy to calculate from Eq. (46). Calculation of the
matrix exponents in Eq. (48) is trivial since, for example, PN

l ¼ Q�KN
ðQ�Þ�1, even for fractional N and it

involves only the calculation of the powers of the diagonal matrix K.
Consider a complete structure which is made of several parts i, each part being composed of Ni periodic

cells. Fig. 4 presents an example of such a structure made of three parts. Each part is defined from a basic cell
repeated Ni times. Using the preceding analysis, the calculation for the whole structure can be done by
assembling the dynamic stiffness matrices of each part given by Eq. (48). The main improvement over classical
FE methods is that in each set of Ni cells, the usual dynamic stiffness matrix is replaced by a dynamic stiffness
matrix with a much smaller number of degrees of freedom. Finally it should be noted that, for a uniform
structure, N need not be integral. If the length of the cell is l and that of the uniform region L, then the analysis
follows the same lines with N ¼ L=l.
N2 cells 

N1 cells N3 cells 

Force 

Fig. 4. Structure with three parts made up of periodic structures.
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5. Examples

5.1. Beam example

5.1.1. Dynamic stiffness matrix

The beam of length L shown in Fig. 5a, which is fixed on the left side and simply supported on the right side
is considered as an example. It is divided into N elements of length l, such that L ¼ Nl, and is divided into two
regions of lengths L1 ¼ N1l and L2 ¼ N2l by a force F applied at 2=3L. The beam element with four degrees of
freedom is shown in Fig. 5b. This is the basic cell introduced earlier. The elementary stiffness and mass
matrices for this element are given by (see for instance Ref. [26])

Ke ¼
EI

l3

12 6l �12 6l

6l 4l2 �6l 2l2

�12 �6l 12 �6l

6l 2l2 �6l 4l2

2
6664

3
7775; Me ¼

rSl

420

156 22l 54 �13l

22l 4l2 13l �3l2

54 13l 156 �22l

�13l �3l2 �22l 4l2

2
6664

3
7775, (49)

where E is the Young’s modulus, r the density of the material, I the second moment of area and S the cross-
sectional area. Hysteretic damping is assumed which leads to the damping matrix Ce ¼ ZKe, but the method of
analysis can be used for any damping model where the function ~EðjoÞ which gives the frequency dependent
complex Young’s modulus is known. The dynamic stiffness matrix of the element at frequency o is then
De ¼ Ke þ jCe � o2Me. It is more convenient to work with non-dimensional quantities, so the displacements
are normalised with respect to l and the force and bending moment with respect to ~EI=l2 and ~EI=l, where
~E ¼ ð1þ jZÞE. The dynamic stiffness matrix is now

De ¼

12� 156
420
ðklÞ2 6� 22

420
ðklÞ2 �12� 54

420
ðklÞ2 6þ 13

420
ðklÞ2

6� 22
420
ðklÞ2 4� 4

420
ðklÞ2 �6� 13

420
ðklÞ2 2þ 3

420
ðklÞ2

�12� 54
420
ðklÞ2 �6� 13

420
ðklÞ2 12� 156

420
ðklÞ2 �6þ 22

420
ðklÞ2

6þ 13
420
ðklÞ2 2þ 3

420
ðklÞ2 �6þ 22

420
ðklÞ2 4� 4

420
ðklÞ2

2
666664

3
777775, (50)

where k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rSl2o2= ~EI

q
is the wavenumber.
5.1.2. Frequency response

The FRF is calculated for excitation by the force F at the position 2/3L. The forces and the displacements
for the parts of the beam on the left and right sides of the force are denoted by the superscript 1 and 2,
2/3L F
element size

l

l

L=Nl

M1 M2F1 F2

�1 �21 2

(a)

(b)

Fig. 5. Beam example: (a) fixed-simply supported beam of length L with force F applied at 2=3L; (b) single element of the beam.
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respectively. They are related by

f1L

f1R

2
4

3
5 ¼ D1

q1L

q1R

" #
,

f2L

f2R

2
4

3
5 ¼ D2

q2L

q2R

" #
, ð51Þ

where the matricesD1 andD2 are given by Eq. (48) with the propagation matrices calculated from Eq. (50). The
following boundary conditions are defined on the left and right sides and at the point where the force is applied:

q1L ¼ 0,

q1R ¼ q2L,

f1R þ f2L þ
�F

0

" #
¼ 0,

M2
R ¼ 0,

v2R ¼ 0. ð52Þ

Assembling the matrices for the two parts of the beam and eliminating the fixed degrees of freedom gives the global
dynamic stiffness matrix. The displacements and rotations can be obtained by solving the system of equations

F

0

0

2
64

3
75 ¼ Dtot

v2L

y2L
y2R

2
64

3
75, (53)

where Dtot is the total dynamic stiffness matrix of the beam. This has now only three degrees of freedom. Fig. 6
shows the theoretical and the numerical predictions for the displacement of the beam per unit input force at the
location of the force for a beam with 3, 30, 3000 and 10,000 cells. In this example, the cell is made of steel with
E ¼ 2� 1011 Pa, r ¼ 7800 kg=m3, I ¼ 8:33� 10�14 m4, L ¼ 1m, S ¼ 10�6 m2 and Z ¼ 0:01. The results for
three cells are clearly inaccurate except for very low frequencies, showing that the cell size is too large in this case.
The calculations for 30 and 3000 cells provide a very good comparison with the analytical solution. Thus the
waveguide element approach is accurate for cells with very different scales and is essentially accurate if klo2.
However, the case with 10,000 cells shows the limits of the method when the cell size becomes too small. The
solution is no longer accurate for low frequencies. This is not a real problem in practice as the need for very small
cells is for high frequency vibration. It should be noted that the computation time is independent of the number of
cells, which is a great advantage over classical FE methods.

5.2. Plate example

The example of a simply supported plate excited by a force F in the middle as shown in Fig. 7 is considered. The
numerical results are obtained from Ansys stiffness and mass matrices for the mesh of a strip made of 100
elements of type shell63 and size 0:01m� 0:01m with four nodes. The material is steel with the same parameters
as for the beam. The width is l ¼ L=100, which means that N ¼ 100 cells are necessary to model the whole plate.

The approach is similar to the beam case except that the dynamic stiffness matrix comes from Ansys. The
following boundary conditions are defined on the left and right sides and at the point where the force is applied:

q1L; f
1
L simply supported,

q1R ¼ q2L,

f1R þ f2L þ F ¼ 0,

q2R; f
2
R simply supported. (54)
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Fig. 7. Simply supported plate excited at the centre.
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Fig. 6. FRFs of the beam for different numbers of elements calculated using the WFE approach compared with analytical FRFs, —

analytical, - - - waveguide: (a) 3 cells; (b) 30 cells; (c) 3000 cells; (d) 10,000 cells.
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As the simply supported boundary conditions are not easy to apply in the reduced basis, we propose to write
the boundary condition as Aq ¼ Cf where A; C are some matrices, not necessarily invertible and often with
many zeros and few 1’s as entries. From the relations q ¼ Qþr and g ¼ Qþ

T

f relating the coordinates of the
forces and displacements in the reduced and usual basis, using the approximation

f ¼ QþðQþ
T

QþÞ�1g, (55)
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the boundary condition in the reduced basis can be written as A0r ¼ C0g with

A0 ¼ Qþ
T

AQþ; C0 ¼ Qþ
T

CQþðQþ
T

QþÞ�1. (56)

The displacements and rotations can be obtained by the solution of the following system, where Dtot is the total
dynamic stiffness matrix of the plate:

Gext ¼ Dtotr. (57)

This can also be written as

g1

g2

g3

2
64

3
75 ¼

D11 D12 O

D21 D22 D23

O D32 D33

2
64

3
75

r1

r2

r3

2
64

3
75 (58)

and finally the global system can be written as

0

g2

0

2
64

3
75 ¼

C0D11 � A0 C0D12 O

D21 D22 D23

O C0D32 C0D33 � A0

2
64

3
75

r1

r2

r3

2
64

3
75, (59)

with the reduced force component given by g2 ¼ Qþ
T

f2.
Fig. 8 shows the displacement of the centre of the plate due to excitation by the force F. Waveguide

calculations for different number of modes used to calculate the reduced matrix (11) and the analytical
solution are shown. The two results agree very well provided more than 30 modes are used in the calculation.
This means that a section can be accurately described with 30 degrees of freedom instead of 299 degrees of
freedom which are necessary in the FEM model of a cross section. Fig. 9 compares the analytical solution and
the present waveguide solution with Ansys standard modal analysis for 10� 10 and 100� 100 elements.
Clearly a mesh with 10� 10 elements is not enough to obtain an accurate solution but the solution with
100� 100 elements is much more accurate. The calculation with Ansys requires about 600Mb of disk space
compared to about 6Mb for the waveguide approach. A similar reduction is obtained in memory requirement.

6. Conclusions

A numerical method for calculating the vibrations of uniform waveguides and periodic structures has been
presented. The starting point of this approach is the dynamic stiffness matrix of a cell of the structure, which is
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obtained from standard FE software after meshing the cell and finding the mass and stiffness matrices. To
analyse the structure in terms of waves, the transfer matrix linking the displacements and forces on both sides
of a cell was introduced. The propagation constants and the wave basis are the eigenvalues and eigenvectors of
the transfer matrix, respectively. This basis allows the decomposition of the state vector, which comprises the
displacements and forces in a section, into wave amplitudes. Thus, the behaviour of a structure with N cells
can be written in a simple way in terms of wave amplitudes and, after some algebra, the dynamic stiffness
matrix of the global structure is obtained. A simple, explicit and stable expression is found for this matrix.

Examples of point force responses for beams and plates show that the accuracy of the present approach is
good when the size of the cell is small compared to a wavelength. Compared to standard FE approaches, the
cost of a calculation with the WFE approach is reduced because only one cell has to be meshed rather than the
whole structure. The other advantage is that standard FE packages can be used to mesh a cell, which cannot
be done with the SFE approach, which requires the development of new elements for each application. The
model is also valid for any type of damping. The link with Ansys to obtain the stiffness and mass matrices
allows more complex structures to be modelled than the examples shown here.
References

[1] D. Wang, C. Zhou, J. Rong, Free and forced vibration of repetitive structures, International Journal of Solids and Structures 40 (2003)

5477–5494.

[2] H. von Flotow, Disturbance propagation in structural networks, Journal of Sound and Vibration 106 (1986) 433–450.

[3] L.S. Beale, M.L. Accorsi, Power flow in two- and three-dimensional frame structures, Journal of Sound and Vibration 185 (1995)

685–702.

[4] S. Finnveden, Finite element techniques for the evaluation of energy flow parameters, Proceedings of the Novem, Lyon (keynote

paper), 2000.

[5] S. Finnveden, Evaluation of modal density and group velocity by a finite element method, Journal of Sound and Vibration 273 (2004)

51–75.

[6] C.M. Nilsson, Waveguide Finite Elements for Thin-Walled Structures, Licentiate Thesis, KTH, Stockholm, 2002.

[7] P.J. Shorter, Wave propagation and damping in linear viscoelastic laminates, Journal of the Acoustical Society of America 115 (2004)

1917–1925.

[8] F. Birgersson, Prediction of Random Vibration Using Spectral Methods, PhD Thesis, KTH, TRITA-AVE, Stockholm, 2003, p. 30.

[9] F. Birgersson, S. Finnveden, C.M. Nilsson, A spectral super element for modelling of plate vibration. Part 1: general theory, Journal

of Sound and Vibration 287 (2005) 297–314.



ARTICLE IN PRESS
D. Duhamel et al. / Journal of Sound and Vibration 294 (2006) 205–220220
[10] F. Birgersson, S. Finnveden, A spectral super element for modelling of plate vibration. Part 2: turbulence excitation, Journal of Sound

and Vibration 287 (2005) 315–328.

[11] L. Gry, Dynamic modelling of railway track based on wave propagation, Journal of Sound and Vibration 195 (1996) 477–505.

[12] L. Brillouin, Wave Propagation in Periodic Structures, Dover, New York, 1953.

[13] D.J. Mead, Wave propagation in continuous periodic structures: research contributions from Southampton, 1964–1995, Journal of

Sound and Vibration 190 (1996) 495–524.

[14] D.J. Mead, A general theory of harmonic wave propagation in linear periodic systems with multiple coupling, Journal of Sound and

Vibration 27 (1973) 235–260.

[15] D.J. Mead, Wave propagation and natural modes in periodic systems: I. Monocoupled systems, Journal of Sound and Vibration 40

(1975) 1–18.

[16] D.J. Mead, Wave propagation and natural modes in periodic systems: II. Multicoupled systems with and without damping, Journal of

Sound and Vibration 40 (1975) 19–39.

[17] L. Houillon, Modélisation Vibratoire des Carrosseries Automobiles en Moyennes et hautes Fréquences, PhD Thesis, Ecole Centrale

de Lyon, Décembre, 1999.

[18] L. Houillon, M.N. Ichchouh, L. Jezequel, Wave motion in thin-walled structures, Journal of Sound and Vibration 281 (2005) 483–507.

[19] B.R. Mace, D. Duhamel, M.J. Brennan, L. Hinke, Wavenumber prediction using finite element analysis. Eleventh International

Congress on Sound and Vibration, St. Petersburg, 2004.

[20] B.R. Mace, D. Duhamel, M.J. Brennan, L. Hinke, Finite element prediction of wave motion in structural waveguides, Journal of the

Acoustical Society of America 117 (2005) 2835–2843.
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